On weighted spectral radius of unraveled balls and normalized Laplacian eigenvalues
نویسندگان
چکیده
For a graph G, the unraveled ball of radius r centered at vertex v is in universal cover G. We obtain lower bound on weighted spectral balls fixed with positive weights edges, which used to present an upper sth (where s≥2) smallest normalized Laplacian eigenvalue irregular graphs under minor assumptions. Moreover, when s=2, result may be regarded as Alon–Boppana type for class graphs.
منابع مشابه
Bounds on normalized Laplacian eigenvalues of graphs
*Correspondence: [email protected] 1School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, Fujian, P.R. China 2Center for Discrete Mathematics, Fuzhou University, Fuzhou, Fujian, P.R. China Full list of author information is available at the end of the article Abstract Let G be a simple connected graph of order n, where n≥ 2. Its normalized Laplacian eigenvalues are 0 = λ1 ...
متن کاملEigenvalues of the normalized Laplacian
A graph can be associated with a matrix in several ways. For instance, by associating the vertices of the graph to the rows/columns and then using 1 to indicate an edge and 0 otherwise we get the adjacency matrix A. The combinatorial Laplacian matrix is defined by L = D − A where D is a diagonal matrix with diagonal entries the degrees and A is again the adjacency matrix. Both of these matrices...
متن کاملLimit points for normalized Laplacian eigenvalues
Limit points for the positive eigenvalues of the normalized Laplacian matrix of a graph are considered. Specifically, it is shown that the set of limit points for the j-th smallest such eigenvalues is equal to [0, 1], while the set of limit points for the j-th largest such eigenvalues is equal to [1, 2]. Limit points for certain functions of the eigenvalues, motivated by considerations for rand...
متن کاملNote on the normalized Laplacian eigenvalues of signed graphs
The normalized Laplacian of a graph was introduced by F.R.K. Chung and has been studied extensively over the last decade. In this paper, we introduce the notion of the normalized Laplacian of signed graphs and extend some fundamental concepts of the normalized Laplacian from graphs to signed graphs.
متن کاملOn Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs
Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2022
ISSN: ['1872-681X', '0012-365X']
DOI: https://doi.org/10.1016/j.disc.2022.113173